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Motivation

• Observations from nature are often noisy, temporally irregular and spatially
sparse. On the other hand, the typical predictor model is resolved on regularly
spaced grid points.

• Typically, various interpolation techniques are used to merge multiple satellite
data
For example: cloud clearing algorithm [Chahine, 1973].

• Processing data is often unavoidable
For example: estimating rainfall given rain-guage measurements.

• The goal of this talk is to asses the effect of processed data assimilated in the
presence of model error.

• In particular, we will use hierarchical Bayesian framework.
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Standard Bayesian Approach

Definition

I U : Random variable of the model state

I Ṽ : Random variable of the irregularly spaced observations

I P(U, Ṽ ) : Joint density between two random variables

Canonical Discrete-Time Filtering Problem:

um+1 = f (um) + σm+1, σ ∼ N (0, r),

ṽm = g(um) + εm, εm ∼ N (0, r o)

Solution: Apply the Bayesian Theorem:

P(U|Ṽ ) ∝ P(U)P(Ṽ |U).
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Hierarchical Bayesian Approach

Consider v ∈ V to be the random variable of interpolated observations at the
regular model grid points. Our approach is to apply

P(U|Ṽ ,V ) ∝ P(U)P(V |Ṽ ,U)

∝ P(U)P(Ṽ |U,V )P(V |U).

Step 1: We applyP(Ṽ |U,V )P(V |U) through an interpolation to obtain
P(U)P(V |Ṽ ,U). We compare a statistical interpolation called kriging with a
deterministic linear interpolation.

Step 2: We apply P(U)P(V |Ṽ ,U) through a reduced stochastic Fourier based
filter.
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The Quasi-Geostrophic Model
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Figure: The 2 layer QG model with baroclinic instability, resolved with 128 × 128 grid
points in a 2D periodic domain [Smith et al, 2002]. The radius of deformation is
chosen to mimic ocean turbulence. The top panels show the barotropic velocity field
(arrows) and streamfunction Ψ, (contour) and the bottom panels show the baroclinic
velocity field and streamfunction Ψ (bottom) at two different times.



Spatial Interpolation

Given two-dimensional noisy, sparse observations from the solution to the
two-layer quasi-geostrophic model with baroclinic instability, the first task is to
interpolate to a regular 6× 6 grid.



Spatial Interpolation

Kriging is a maximum likelihood estimator of a random field Z modeled by

Z(s) = µ(s) + δ(s),

assuming Gaussian, stationary noises δ(s) ∼ N (0,C(s, s)).

The steps of kriging:
1. Estimate the mean µ using median polishing. [Cressie, 1993]
2. With the deviations δ build a parametric covariance function. [Cressie, 1993]
3. Compute the conditional mean and covariance at each grid point using the
observations and the parametric covariance function.

We compare ordinary kriging with a deterministic linear interpolation.
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Spatial Interpolation Results
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Figure: The true field (left) and the results of a linear interpolation (middle) and
kriging interpolation (right).



Spatial Interpolation Results

Linear Interp Covariance
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Figure: The noise covariance in physical space (top) and Fourier space (bottom).



Filtering: The Mean Stochastic Model

The next step is to apply a reduced stochastic Fourier based filter. The filter
approximates the barotropic modes of the 2 layer QG model

∂q

∂t
+ J(Ψ, q) + β

∂Ψ

∂x
+ κ∇8q

+

[
J(Ψc , qc) + U

∂∇2Ψc

∂x
− κ∇2Ψc

]
= 0

in Fourier space with

dΨ̂(t) = (−d + iω)Ψ̂(t)dt + Fdt + σdW (t).

Ψ̂: the horizontal Fourier component of the barotropic streamfunction Ψ,
W (t) : a complex-valued Wiener process,
d : damping,
ω: frequency,
F : constant external forcing,
σ: noise strength.

[Madja and Harlim, Chapter 12, 2012]
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The Kalman Filter

The Kalman Filter is a solution to these equations and produces estimates of
the mean and covariance prior and posterior to observation



Filtering Results
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Figure: The RMS errors associated with each step: unfiltered kriging (dashes), filtered
kriging (dashes with ‘+’ sign), unfiltered linear interpolation (solid line), and filtered
linear interpolation (solid line with circles).



Filtering Results: M = 36 and r0 = 17.3

Truth at T=363.280

 

 

0 5
0

2

4

6

−20

−10

0

10

20

0 5
0

2

4

6
Filtering after Linear Interp

 

 

−20

−10

0

10

20

0 5
0

2

4

6
Filtering after Kriging

 

 

−20

−10

0

10

20

Figure: Filtering results at one particular time. The circles illustrate observation
locations.
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Figure: The true barotropic streamfunction (top), interpolated results (middle panels)
and filtered results (bottom panels) at one particular time. The circles illustrate
observation locations.



Summary

• In every case, kriging outperformed the linear interpolation.

• Filtering further improved the results.

• However the biggest improvements occurred in the cases of sparser
observations or larger noise.

• The Mean Stochastic Model is a very simple one, and we expect the results
could be improved with other models.
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